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A New Method for Estimating Life
Distributions from Incomplete Data

by
John Kitchin, Naftali A. Langberg, and Frank Proschan

i ABSTRACT

We construct a new estimator for a continuous life distribution from incomplete

data, the Piecewise Exponential Estimator (PEXE). We show that the PEXE is strongly

consistent under a mild restriction on the distribution of the censoring random
variables (possibly non-identical and non-contimuous). Then we consider the Product

1 Limit Estimator (PLE), introduced by Kaplan and Meier (1958). We prove the strong

- consistency of the PLE under a mild regularity condition on the distributions of the
censoring random variables. This result extends previous ones obtained by various

researchers. Finally we compare the new PEXE and traditional PLE.
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1. Introduction and Summary.
Let xl, XZ’ ... be independent identically distributed (i.i.d.) lifelengths with

a common contimuous life distribution G and let L,, L,, ... be nonnegative censoring
random variables (r.v.'s) not necessarily contimuous or i.i.d. We assume that

[Xl, LlJ, Xy, L,3, ... is a sequence of independent pairs defined on a common
probability space (9, B, P). Without loss of generality we assume that for each

w ¢ @ the sequence xl(u), xz(w), ... consists of distinct positive real mumbers.

Let I denote the indicator function, let Tq = min{xq, Lq} be the removal time of
the qth item on test, and let 9" I()(q < Lq) denote the cause of removal of the qth
item, q =1, 2, ... . We consider the problem of estimating G = 1 - G, the under-
lying survival function, from [Tl, Eqds »ees [Tn, e;nj, n=1, 2, ... . This is the
incomplete data problem as fornulated by Kaplan and Meier (1958). We note that our
assumptions on the lifelengths and censoring r.v.'s are less restrictive than those
assumed in the theory of competing risks, the theory of life tables, and the usual
treatments in biostatistics. Traditionally one or more of the following assumptions
have been made: i.i.d. censoring r.v.'s, continuous lifelengths, continuous censoring
r.v.'s, and the independence of the lifelength and the corresponding censoring r.v. of
each item on test. [Kaplan and Meier (1958), Breslow and Crowley (1974), Peterson
(1977), Langberg, Proschan, and Quinzi (1980) .

In Section 2 we construct a new estimator for the underlying survival function G,

the Piecewise Exponential Estimator (PEXE), and denote it by E'n(t) . In Section 3 we

use a theorem proven in Section 4 to show that the PEXE is a strongly consistent
estimator of G under mild regularity conditions. In particular, we obtain the strong
consistency of the PEXE when Xq, Lq are independent r.v.'s, q =1, 2, ... and under
most of the ''traditional' assumptions discussed in the previous paragraph. In Section

5 we consider the Product Limit Estimator (PLE), introduced by Kaplan and Meier (1958),
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that serves as the principal nonparametric estimator to date of the survival function
G. We show that under a variety of conditions the PLE is a strongly consistent
estimator of . These results extend those obtained by Peterson (1977), and Langberg,
Proschan, and Quinzi (1980). Finally, in Section 6 we compare the new PEXE and the
traditional PLE.
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z. Piecewise Exponential Estinator.

In this section we introduce a new estimator for a continuous life distribution

from incomplete data: the Piecewise Exponential Estimator (PEXE).

We approach the incomplete data problem from the viewpoint of reliability and
life testing. An item at age zero is placed on life test. It eventually leaves the

test either because it fails, yielding a complete life length, or because it is

withdrawn while still functioning, yielding a censored lifelength. Thus if an item

on test is an observed failure, Eq = 1, and if it is a withdrawal, ¢_= 0,

q

q =1, ..., n. Starting with a sample of initial size n, the number of items at
n n

time t is denoted by Nn(t) = 7 I('l‘q >t). Let t(n) = | t:q denote the number of
=1 q=1

observed failures and let zn:l < ... <1 n:t(n) denote the consecutive observed
failure times, with zn'O = 0.
Let R(t) = -in G(t) denote the hazard function of the life distribution G,

t ¢ [0, Sup{u: E(u) > 0}). On the interval (Z 1, we estimate

n:q-14 n
] - [ ma -1 £
(Zn.q = “niq- 1Y {R(Z @ - Rlpq) bY T g Lf 1N | (Wdus™", the number o
Zn:q-
observed failures per unit time in the interval (Z . :q-1° n q]’ 1, ..., t(n).
We note that fn ‘4N (u)du is the total time on test in the interval
Z
n: q~1
@,. q-1° q]’ q-= ...y 1(n). These hazard slope estimators:

T, q q=1, ..., t(n), define a piecewise linear estimator of the hazard function R,
?

which in turn leads to a piecewise exponential estimator of the underlying
survival function G, given explicitly by the following definition.

Definition 2.1. For t(n, w) 2 1 let L q(m] =
?

(qu(w) - zn:q-l(“’))rn:q(”)' g=1, ..., t(n, w), o € 2. Then the Piecewise

Exponential Estimator (PEXE) of the survival function G, denoted by E'n(t, w), is
=wual 4x 1 on the set {t(n, w) =0 or te (-», 0]}, is equal to

q-1
exp{-j An j((.,) -t - qu_l(m))t (w)} on the set {t(n, w) 21, te (Z . _1(.»),

9“‘)
(w)], q=1, ..., t(n, )}, and is equal to exp - §1 n,j} on the set
J.

‘W..-m. R R
1




{t(n, w) 21, te (2 )(w), w) .

n:t(n,w

For the sake of simplicity we supress the argument w in B'n(t, w).
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3. Strong Consistency of the PEXE.

In this section we use Theorem 3.2, stated below and proven in Section 4, to
obtain the strong consistency of the PEXE under various conditions. We need a
definition and some notation.

Definition 3.1. Let K be a function defined on (-», »). We say that K is a

subdistribution function (s.d.f.) if K is nondecreasing, right contimnuous, and assumes

values in (0, 1].
For a s.d.f. K, let K{x) = 1im K(y) - K(x) be the subsurvival function
'-pQ0

corresponding to K, let C(K) be t});e set of all continuity points of K, and let a(K) =
sup{t: K(t) > 0}.

We are now ready to state Theorem 3.2.

Theorem 3.2. Assume the following:

n
(3.1) There is a s.d.f. F(t) such that lim n"} 1T, > t) = F(t) for t e C(),
o gs]

and
(3.2) There is a s.d.f. F(t, 1) such that

n
it 27Yy PT_ S t, g =1} = F(t, 1) for t ¢ (-=, =).

irv® q=1 q

Then there is a set 2, e'B, P{nll = 1, such that for all w € nlz

t
lin E (1) = exp{-(f)[F(u)J'ldF(u, 1)} for t < [0, a(F(-, 1))).
e

Now we use Theorem 3.2 to obtain the strong consistency of the PEXE under
various conditions. For simplicity, we denote throughout a(F(-, 1)) by a) -

First we prove the strong consistency when the lifelength of each item on
test and its censoring r.v. are independent.
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Theorem 3.3. Assume the following:

(i) The r.v.'s xq, Lq are independent forq=1, 2, ...,
and

n
(ii) There is a s.d.f. H(t) such that limn™' § P(L_ < t} = H(t) for t ¢ C(H).
o qg=1 q

Then there is a set 91, P{nl} = 1, such that for all v ¢ Q¢
1im E'n(t) = §(t) for t ¢ [0, al).
e
t
Proof. Let F(t) = G(t)A(t) and F(t, 1) = JAW)dG() for t ¢ [0, =»). To
0

obtain the desired result it suffices, by Theorem 3.2, to verify Conditions (3.1),
(3.2) and to show that:

t
(3.3 &) = exp{-étF(u)]'ldF(u, 1)} for t ¢ {0, a)).

First we verify Conditions (3.1), (3.2). Lette (-, ») andn=1, 2, ... .
Then by Assumption (i):

n n
(3.4) 1wn’l] KT >t =Tt § P > t)l,and
e q.l q q=1 q
D t o n
(3.5) i»n7] PT st, g =1} = [in"" | P{L_>u}lidG).
me qe1 4 Q 0 =1 4

By Assumption (i) and the definition of F, C(F) = C(H). Thus Condition (3.1)
follows by Assumptions (i), (ii), and Equation (3.4).

Condition (3.2) follows from Assumptions (i), (ii), Equation (3.5), and the
dominated convergence theorem. _

Finally we verify Equation (3.3). By the definitions of F(t) and F(t, 1),
ch(u)J'ldF(u, 1) = Z[G’(u)]'ldc(u) for t € {0, a(F)). Consequently Equation (3.3)
follows by the contimuity of G. ||
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Next we obtain from Theorem 3.3 a corollary of practical importance.

Assume that most of the '‘traditional" conditions presented in Section 1 hold
(but not necessarily the continuity qf the censoring r.v.'s). Then Assumptions (i),
(ii) of Theorem 3.3 hold and we obtain:

Corollary 3.4, Assume that the r.v.'s Xq, Lq are independent, q =1, 2, ...,

and that the r.v.'s Lq, q=1, 2, ..., are i.i.d. Then there is a set Q) € B, P{n1}=1,

such that for all w € 91:

lim E'n(t) = G(t) for t ¢ [0, al).
N

Now we derive the strong consistency of En(t) when the censoring r.v.'s are i.i.d.
but not necessarily independent of the corresponding lifelengths.

Theorem 3.5. Assume that the pairs [Xq, L1l,q=1, 2, ... are i.i.d. Then
there is a set 9 € B, P{Ql} = 1, such that for all w €

tel0, al) iff

1> lim l’.-‘.'n(t) = G(t) for
bt g ol

(3.6) P(L, > t|x1 =t} = P(L, > t|x1 > t} for t € [0, a).

Proof. To obtain the desired result it suffices to show that (a) Conditions
(3.1), (3.2) hold and that (b) Conditions (3.3) and (3.6) are equivalent.

(a) Let F(t) = P{T1 < t} and F(t, 1) = P{‘I‘l $t, g = 1, te (=, «). Then
Conditions (3.1), (3.2) hold trivially.

(b) Let A be a Borel set contained in [0, al) . Then:

(3.7) P{T1 €A, £ - 1} = [{ P(Ll > u|X1 = u}dG(u).

First we show that Condition (3.3) implies Condition (3.6). By the
contimuity of G and by Equation (3.7):




oy . v o
e e L .-

¢ -1 - t -1
é[G’(u)J dG(u) = -2nG(t) = (f)[F(u)J dF(u, 1)
t -1 '
= JIFW X 'PIL, > u|X; = uld6(u) for t € [0, o).
0

Consequently Condition (3.6) follows since a, < a(G).

1
Finally we show that Condition (3.6) implies Condition (3.3). By Condition

(3.6) anc Equation (3.7), we have:

‘1=

t
(3.8) F(t, 1) = [[G(u)) "F(w)dG(u) for t ¢ [0, a;), and
0

t t
(3.9) (I)cr(u)fldp(u, 1) = [Cw)1 a6 for t € [0, a)).
0

Consequently Condition (3.3) follows from Equation (3.9) and the contimuity of G. ||
Note that I-.'n(t) is a strongly consistent estimator of the survival function G

whenever Conditions (3.1) through (3.3) hold. Finally we provide an example where

Conditions (3.1) through (3.3) hold. First we need the following definition.

Definition 3.6. [Marshall and Olkin (1967)J. Let Ays Ags and ) be

1,2
nonnegative real numbers, SIRY) + Al 27 0. Then the random pair [U, V] with

nonnegative components has a Marshall Olkin Bivariate Exponential Distribution

(MOBVED) with parameter ZAI, Ays A 24 if for all t, s € {0, =):
’

P{U > t, V > s} = exp{-At - 2,5 - A, , max(t, s)}.

1,2

We now construct the example.
Example 3.7. Let Ay Al,Z’ Yir Yor eee be nonnegative real numbers,
Aq =t "1,2 + Yq >0,q=1, 2, ..., and let qu, Lq], q=1, 2, ..., be a sequence

of random pairs having MOBVED's with parameters CAI, Yo M 2] respectively. Assume
Hd

qQ
t.hatlimyn-yeto, w),andthatxl+>‘12+y>0. We show that under these
e ’

assumptions, E'n(t) is a strongly consistent estimator.




Note that for t ¢ [0, ») and q =1, 2, ...:

P{xq >t} = exp{-(3; + xl’z)t}, P{Tq > t}= exp{-Aqt}, and

= = -1
P{'I‘q >t, g =11 = (0 * }‘l,Z)Aq exp{-Aqt},

q

Let F(t) = exp(-At} and F(t, 1) = (a, * Al’z)A-lexp{-At}, t e [0, »). Clearly
Conditions (3.1) through (3.3) hold. Thus, by Theorem 3.2, E’n(t) is a strongly
consistent estimator of G for t ¢ [0, =),

In particular, if the random pairs [xq, Liq=1,2, ..., are i.i.d. with a

q
MOBVED, then E'n(t) is a strongly consistent estimator of G for t ¢ [0, =).
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4. Proof of Theorem 3.2.

In this section we present a proof of Theorem 3.2. Let
n
F(t,w= nl] I(T () >t)and F (t, 1, ) =
qal q n
RS
n XI(T w)st, g w=1,n=1,2, ..., te (=, »), wea.
qal q q
For the sake of simplicity in notation we supress throughout the argument w.
t
Note that the contimiity of the function exp(-[tF(u)i ldF(u, 1)} in (0, a))
0
follows from the contimuity of F(t, 1), which in turn, follows from the continuity

of G. Thus to prove the result of Theorem 3.1, it suffices to show by a standard
argurent [Chung (1974), pp. 132-133] that:

t
(4.)  1imE (t) = exp{-[{Fw) 1 dF(u, 1)}, w.p.1. for t ¢ [0, a)).
e 0

First we prove that to obtain Statement (4.1), it suffices to show that:

t t
4.2)  1im (f)[Fn(u)]'lan(u, 1) = £[F'(u) 17YaFm, 1), w.p.1. for t € [0, a(F)).
o

Then we complete the proof of Theorem 3.2 by verifying Statement (4.2).
We need some more notation and two lemmas. Let a(n, t) =
max{k: k=0, ..., t(n), ka <t), tel0 al), n=1, 2, ..., and let [x)
denote the largest integer less than or equal to X, X ¢ (-=, =).
Lemna 4.1. Assume that Conditions (3.1), (3.2) hold. Then

4.3)  1imF (t) = F(t), w.p.1. for t ¢ C(P),
1 204

and

4.4) lim Fn(t, 1) = F(t, 1), w.p.1l. for all t ¢ {0, =),
) § naud




Proof. To prove Statements (4.3) and (4.4) it suffices to show by Conditions
(3.1), (3.2) that for all t ¢ (-», =):

. 1mF(t)-nlzp{T>t}J-0wp1 and that
e q=1 q

Lin(F (t, 1) - n° 2 T, st,

=1}1 =0, w.p.l.
o q=1 q

The preceding two statements follow by the strong law of large numbers. ||
Lemma 4.2. Assume that Conditions (3.1), (3.2) hold. Then

L e

>t, w.p.l. for t € [0, o

B (4.5) lim Z -
4 o

n:t(n)

Proof. Let lim Z = a. For a = », Statement (4.5) follows trivially.
e ntn)

Assume a < »; then by Statement (4.4):

F(s, 1)=limm F (s, l)slmml):p{a 1}
Moo Mo g=] 9

< F(a, 1) for all s ¢ [0, »), where {m} is a subsequence of the positive

integers.

; Thus a 2 a;. Consequently Statement (4.5) follows. I
‘ We show now that to prove Statement (4.1), it suffices to verify Statement
4.2).
Lemma 4.3. Assume that Conditions (3.1), (3.2) hold. Then:

t
(4.6) lim| an E (t) + f[Fn(u)J°1dF (&P = 0, wop.l. for t ¢ [0, a;).
e 0 n,.

f ‘ - Proof. Let @, ¢ B, P{a,} = 1, and let t ¢ [0, a;). Then by Statements (4.3)
through (4.5) for every w € nz, there is a positive integer n(w) such that

F,(t)>0, t(n) 21, f[F(u).l Lar (U 1) <=, and 2
w € Ry Then:

n:t(n) >t for n 2 n(w). Let




P -1
"nFn(“r'uq-l)J < (Zn:q ) Zn:q-ljrn,q <

[nl*'n(zn:q)]'1 forq=1, ..., t(n), n 2 n(w).

By Inequality (4.7):
_ a(n,t) .
F -enE (t) 2 qzl [nFn(zn:q-l) R

t
{{tFn(u)]-lan(u, 1) - [nFn(t)J'l for n 2 n(w).

Consequently:

t
(4.8) Tnl'ilizn%(t) + (])[F'n(u)J'lan(u, 1)3 < 0.

Further, by Inequality (4.7):
a(n,t)+l

)

q=1

t
F' -anE, (1) < [nfn(zmqn'l < gtF’n(u)]'lan(u, 1)

= -1
+ l:“Fn(znza(n,t)ﬂ)“ .

By Condition (3.2) there is a 6 ¢ (0, a - t) and a positive integer n, such that

a(n, t) + 1 s nF(t + 45, 1) forn2 n,. Thus:

(2, n, gy € 0L - 07, ©) ¢ 1)

< [n(1 - F(t + s, l)ll'1 < [(nF(t + 8, 1))]'1 forn 2 n.

Consequently: N
t |
‘ 4.9) Llim [nE (t) + J'[Fn(u)J'lan(u, 1)) 2 0.
: e 0

t Statement (4.6) follows now from Inequalities (4.8) and (4.9). ||




- Let 8 = Sup{F(t, 1): t e [0, =)}, t e [0, a(F)), and b(n, t) =

max{t(n), a(n, t) + 1}. Assume that the r.v.'s Ll, cees Lz, ... are i.i.d. Then by
considering the cases F(t, 1) = g8 and F(t, 1) < 8, it follows that

) > 0. Thus if the r.v.'s L,, L

lim Fn(z p» byo ... arve i.i.d. Statement (4.6)
e

n:b(n,t)
holds for t ¢ (0, a(F)).

We complete the proof of Theorem 3.2 by verifying Statement (4.2).
Lemma 4.4. Assume that Conditions (3.1), (3.2) are satisfied. Then
Statement (4.2) holds.

n
Proof. Let Fn(u-, 1) = n'lz P{'l‘q <t g,*1}, ue (-, =), and let
=] .
t € [0, a(F)). Upon integration by parts:

t -1 t -1
{;[Fn(u).l an(u, 1) = -{)Fn(u-, l)d[Fn(u)J
+ (F,)1 e ¢, 1) - (F, 017 0, 1) =

t t
[tFy (s 1) - P, IR [F, DAF

-1 =1
+ [F’n(t)_l Fn(t, 1) - [Fn(O)J Fn(o, 1).
Thus, by the continuity of F(-, 1), and upon integration by parts:

t t
4.20)  [iF,@1%F @, 1) = fiF @1 dk@, 1) + !
0 0
- 4 1
(F, ()17 F (¢, 1) - F(t, 1)} - (F,(0)17F, (0, 1) - F(0, 1)}

t
- [(Byass D - o, DMF @7

Next note that by Statement (4.3), the continuity of F(u, 1), and the dominated

convergence theorem:

t t
(4.11)  lim [(F, (1 dF@, 1) = [F@) Y@, 1, wp.l.,
e 0 0




Thrt b Steatements (4.3), (4.4):

(4.12)  LmF(6)17ME (¢, 1) - F(t, 1)) = 0, and
e

lim[Fh(O)J'l{Fn(O, 1) - F@, 1)} = 0, w.p.1.,
Ty

and that by the contimuity of F(-, 1):

(4.13) lim Sup{IFn(u-, 1) - F(u, 1)], u e [0, ti} = 0, w.p.l.
Itheo

Consequently the desired result follows by Statements (4.10) through (4.13). ||

i( Finally, assume that the r.v.'s Ll’ Lz, ..., are i.i.d. Then by the remark
following Lemma 4.3, and Ly Lemma 4.4, Statement (4.1) holds for t ¢ {0, a(F)).
Consequently if the r.v.'s Ll’ Lz, «v. are i.i.d. then Corollary 3.4, holds for

t e [0, a(F)).




S. Serovag Lous.scendy o the PLE.

In this section we first prove that as n + = the PLE converges to

t
expf{ - é[F(u) ]'ldP(u, 1)} for t ¢ [0, afF)) Then we use this result to obtain the
strong consistency of the PLE under various conditions.

Let K‘(t) denote the PLE. Then by the continuity of G, an(t) is given by

[1 , t(n) =0or te (-=, 0),
CoF G )@ + 157
j=1 ROm] n"n:j ?

M) = telz Z .3 q=1, ..., 1),

n:q-1’ “n:q

t(n) -1
n [nF J)J[nFn(Zn:J) +11 7, r(n) 21, te [Zn:r(n)’ w).

j=1 n{n;

|
Note that originally Kaplan and Meier (1958) left the PLE undetermined on the set-

(mx{'l'q, q=1, ..., n}, =),

We prove now that M (t) converges.

Theorem 5.1. Assume that Conditions (3.1), (3.2) hold. Then there is a set
8 € B, P{Ql} = 1, such that for all u ¢ Q°

t
Lim i (¢) = exp{-(})'[F'(u)J'ldF(u, 1)} for t € [0, a(F)).
| { 3a0d

Proof. Note that the continuity of the function exp{ -}{F'(u) J'ldF(u, 1)} in
‘ (0, a(F)) follows from the continuity of F(t, 1) which, in (t):um, follows from the
. | . continuity of G. Thus to prove the desired result it suffices to show by a standard
argument [Chang (1974), pp. 132-133] that:

t
| ‘ 5.1)  umM () = ap{-é[F(u)]'ldF(u, 1)}, w.p.l. for t ¢ [0, a(F)).
3 b

To prove Statement (5.1), it suffices to show by Lemma 4.4 that:
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t
(5.2) linlenT () + [T MFE (u 1)' =0 51 %orte D, a(F).
e n n n

We prove now Statement (5.2). Note that:

(5.3) x1a -mx(1 + x)'1 2 (x + 1)'1 for x € (0, =).

By the definition of R‘(t) and Inequality (5.3), for t e (0, a(F)):
a(n,t)

-en (t) < (2

t
L (0F, ;. )] 1, érrn(u)j 4 (u, 1), w.p.l.

Thus

t
(5.4)  Linfen{(t) + {EFn(u)J'lan(u, 1)1 20, w.p.l.

Further, by the definition of ﬁn(t) and Inequality (5.3), for t € [0, o(F)):

- a(n,t) -1
-aM (¢) 2 qzl [nFn(qu) + 117" 2

amt) 1t
L g 2 i@ e, )

-[nFn(t)J'l, w.p.l. ]

Thus, by Condition (3.1):

t
(5.5) ml'x'T:l[m‘c'l;](t) . 5 Fn(u)J'lan(u, 1)1 50, w.p.l.

Statement (5.2) follows now by Inequalities (5.4) and (5.5). ||

Note that for t ¢ [0, a(F)), gm{'l‘q, q=1, ..., n} >t. Thus »
e .
Statement 5.2 holds regardless how we define Fin(t) on the set: (max{'rq. q=1, ...,n},=. §




e e e e —— Y

i/

It follows from Theorem 5.1 that if we replace in Theorems 3.3, 3.5, and
Corollary 3.4, En(t) by F{n(t) and o; by a(F), the results remain valid. Thus we
obtain the strong consistency of the PLE under a variety of Conditions. In

particular, we obtain the strong consistency of the PLE when Xq, L_ are independent

q
r.w.'s,q=1, 2, ..., and under most of the ‘'traditional'' assumptions.
Finally we note that these results extend those obtained by Peterson (1977).

ard by Langberg, Proschan, and Quinzi (15.0).




6. A Comparison of the Piecewise Exponential Estimator and the Product-Limit

Estimator.
In this final section we point out some differences and similarities between the
PEXE and the PLE.
The most obvicus difference between the two estimators is that the PEXE is

continuous and s:rictly decrrasing on [0, Z )) while the PLE is a step function

n:t(n
with jumps at the cbserved failures. Since in most life testing situations the
survival function is anticipated to be decreasing smoothly over time, the PEXE seems
tac more appropriate estimator of a life distribution.

Another difference which favors the PEXE is its dependence on the actual
withdrawal times in each interval between consecutive observed failures (through the
total tiime on test) compared with the PLE's dependence on only the number of with-
drawals in eacih of the intervels. The PEXE uses more information from the T
ircemplete d<ta than does the PLE.

It is clear from Sections 4 and 5 that the PEXE and the PLE have the same strong
(w.p.l) limiting function. Also the PEXE has the same weak limiting process as that i

given for the PLE by Breslow and Crowley (1974). [A derivation of this result is

Zorthceming.l Comsejuontly, finite sample comparisons of the PEXE and the PLE will
be important in determining whether the differences cited in the previous paragraph
(which disappear in the limit) result in quantitative advantages for the PEXE over
the PLE. Chen, Hollander, and Langberg (1980) are conducting such a study. They

assume that the restrictive assumptions discussed in Section 1 hold and that, in

addition, P{xl >t} = [P{L1 >t}1° for t ¢ {0, »), where p is a positive real number.
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